首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4899篇
  免费   1493篇
  国内免费   2451篇
测绘学   26篇
大气科学   78篇
地球物理   729篇
地质学   7346篇
海洋学   64篇
天文学   97篇
综合类   324篇
自然地理   179篇
  2024年   26篇
  2023年   140篇
  2022年   238篇
  2021年   232篇
  2020年   270篇
  2019年   303篇
  2018年   283篇
  2017年   313篇
  2016年   355篇
  2015年   379篇
  2014年   415篇
  2013年   323篇
  2012年   451篇
  2011年   388篇
  2010年   354篇
  2009年   373篇
  2008年   253篇
  2007年   362篇
  2006年   346篇
  2005年   287篇
  2004年   325篇
  2003年   287篇
  2002年   246篇
  2001年   221篇
  2000年   257篇
  1999年   278篇
  1998年   207篇
  1997年   181篇
  1996年   150篇
  1995年   147篇
  1994年   117篇
  1993年   109篇
  1992年   80篇
  1991年   33篇
  1990年   35篇
  1989年   21篇
  1988年   19篇
  1987年   16篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1979年   5篇
  1954年   3篇
排序方式: 共有8843条查询结果,搜索用时 31 毫秒
81.
试论新疆成矿体系与时空演化模式   总被引:2,自引:1,他引:1  
文章探讨了成矿体系的内涵,在以往研究成果和编制1∶1 500 000中国新疆维吾尔自治区矿床成矿系列图的基础上,根据先时间、后空间、再成因的总体思路,完善了新疆前寒武纪、早古生代、晚古生代、中生代、新生代五个时段成矿体系,初步构建了各时段成矿体系的时空演化模式,总结出5个时段成矿体系的特点是:前寒武纪为基底陆壳的形成与发展各具特色的成矿体系;早古生代板块体制早期发育具中亚成矿域特色的成矿体系;晚古生代板块体制晚期发育具中亚成矿域特色的成矿体系;中生代新疆北部发育板内西域成矿特色的成矿体系和新疆南部发育特提斯成矿域特色的成矿体系;新生代发育板内西域成矿特色的大陆成矿体系。  相似文献   
82.
克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用   总被引:11,自引:6,他引:5  
克拉通是大规模成矿的重要构造环境,其边缘产出了众多世界级规模的金、钼、稀土元素矿床。然而,克拉通如何控制巨型矿床的形成与分布尚不十分清楚。文章基于作者和前人的研究成果,探讨了扬子和华北克拉通岩石圈早期金属富集与后期金属活化问题。在全球范围,多数克拉通在其形成之后长期保持稳定,但部分克拉通(如华北、扬子)在克拉通化之后又经历了早期(元古代)增生与晚期(中生代—新生代)改造。在克拉通化及其之后,处于克拉通边缘的大洋岩石圈或克拉通块体间的有限洋盆发生板片俯冲,释放出含金属组分(REE、Cu、Au)的富CO2流体,交代亏损的大陆岩石圈地幔(SCLM),并使之发生交代和金属再富集。俯冲诱发的弧岩浆在大陆下地壳底侵可形成新生下地壳,伴随着少量硫化物的堆积而发生金属(Au、Cu)再富集。由于克拉通相对稳定,新生下地壳在进变质脱水过程中仍能保存部分金属,释放的(含Au)变质流体很可能被封存或固结在地壳的某个部位。在克拉通破坏改造期,软流圈上涌改变克拉通SCLM热结构并诱发其部分熔融,产生富REE的碳酸岩熔体和富水的基性岩浆(如煌斑岩)。前者在浅部地壳侵位并出溶成矿流体,形成碳酸岩型REE矿床;后者在深部地壳脱挥发分(H2O+CO2),诱发新生下地壳重熔和含Au硫化物(和/或含Au流体囊)活化,形成富Au岩浆系统或流体系统。这些深地壳熔/流体沿克拉通边界或岩石圈不连续运移至上部地壳,岩浆系统直接出溶成矿流体,形成以斑岩体为中心的斑岩型Au矿,含Au富CO2流体流沿断裂网络系统活动并沉淀金属,形成石英脉型和蚀变岩型Au矿。伴随克拉通破坏改造,克拉通边界断裂或基底断裂重新活化,并诱发古老下地壳熔融,产生含Mo岩浆系统。这个理论框架不同于已有的造山带成矿理论模式,它解释了克拉通边缘异常富集Au、Mo、REE矿床及其成矿规律,可用于类似克拉通地区的成矿预测。  相似文献   
83.
甘肃成矿系列研究及矿产勘查新突破   总被引:1,自引:0,他引:1  
甘肃省地质环境复杂,成矿条件优越,矿产资源相对丰富,构造上位于古亚洲、滨太平洋、特提斯三大构造域的交接部位,有北山、祁连山、西秦岭3个北西-南东向造山带,其间夹持着敦煌、阿拉善、中-南祁连、鄂尔多斯等地块。根据甘肃省的构造演化、岩石建造组合及矿产分布规律,运用成矿系列理论,对全省各成矿单元成矿系列和谱系作了初步研究与梳理,重新划分出10个成矿系列组,54个成矿系列,42个成矿亚系列,82个矿床式。在此基础上,进一步归并出4个矿床成矿系列组合、16个矿床成矿系列类型。通过归纳总结祁连山-龙首山、秦岭成矿区矿床成矿谱系,依据甘肃主要成矿大区不同构造环境、成矿旋回和成矿系列发育特征,运用缺位找矿思维,调整对区域矿产勘查工作部署,开展新区域、新层位、新类型、新矿种勘查找矿,取得重要成果。西秦岭地区玛曲县大水金矿、夏河县加甘滩金矿找矿成果卓著,先后列为国土资源部2010年度、2014年度全国10大找矿成果,西成铅锌矿田厂坝老矿山深部勘查资源储量大幅度增加,发现大桥金矿新类型;北祁连西段卡瓦铁矿富集区评价取得新进展,将成为镜铁山铁矿资源接续区;阿尔金成矿带青砂沟锰矿勘查实现新层位找矿突破,显示出成矿系列理论在指导区域成矿规律研究方面具有强大的生命力和科学依据。甘肃省内已设置国家级整装勘查区5个,据《2012年全国主要矿产资源储量通报》,甘肃省金矿资源储量跃居全国第2位,锰矿居全国第8位,锌、铅矿分别位稳居全国第3、6位,找矿潜力巨大。  相似文献   
84.
殷马断裂带在桐柏山—大别山造山带中的地质意义探讨   总被引:2,自引:0,他引:2  
殷店—马垅断裂带是桐柏—大别造山带南缘一条重要的韧性断裂带,是桐柏—大别造山带内部发育的一条明显的岩地层单元界线,同时也是华北和扬子两大板碰撞挤压的产物。它与桐柏—大别造山带的形成,发展和演化,有着密不可分的联系。通过对殷店—马垅断裂带东西段野外岩性剖面对比分析、显微构造对比、有限应变测量对比分析、应力场分析等,发现尽管东、西段构造特征略有差异,但是殷店—马垅断裂整体是具有右旋运动性质的剪切带,殷店—马垅断裂带的形成对华北与扬子碰撞所产生的应力具有消减转移效应,它本身是一个塑性剪切最强的断裂带,它反映了造山带内部不同岩性的块体之间右旋流变的运动学模式,同时也可能充当着桐柏—大别山核部岩块相对扬子板块向东运动的的"润滑带"。  相似文献   
85.
卡拉麦里地区处于中亚—兴蒙成矿域东准噶尔成矿带的南段,晚古生代增生—碰撞过程明显、构造和岩浆活动强烈、矿产资源丰富。晚古生代增生—碰撞成矿作用集中在两个时期,卡拉麦里北缘至野马泉为主的泥盆纪和卡拉麦里构造带为主的早石炭世中晚期—二叠纪。本文在综合研究基础上,根据卡拉麦里地区晚古生代增生—碰撞过程的地球动力学和成矿特征,将成矿系统划分为:泥盆纪活动大陆边缘斑岩型金成矿系统,早石炭世中晚期后碰撞挤压—伸展转换阶段浅成低温热液—斑岩型金铜成矿系统,晚石炭世—二叠纪后碰撞伸展阶段造山型金铜成矿系统和岩浆热液型锡金成矿系统,以后3类为主。矿床组合包括:韧性剪切带型金矿、浅成低温热液型金矿、岩浆期后热液脉型金矿、斑岩型铜金矿、构造控制脉型铜矿和云英岩—石英脉型锡矿。认为该地区的泥盆纪活动大陆边缘成矿系统可能被晚石炭世—二叠纪后碰撞造山型金成矿系统所叠置而不易识别,后碰撞作用主导了该地区主要成矿系统,大陆岩石圈拆沉和软流圈地幔上涌产生的走滑伸展构造—壳幔岩浆作用—混合流体作用是卡拉麦里地区金属成矿作用的地球动力学机制。  相似文献   
86.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   
87.
White mica (phengite and paragonite) K–Ar ages of eclogite-facies Sanbagawa metamorphic rocks (15 eclogitic rocks and eight associated pelitic schists) from four different localities yielded ages of 84–89 Ma (Seba, central Shikoku), 78–80 Ma (Nishi-Iratsu, central Shikoku), 123 and 136 Ma (Gongen, central Shikoku), and 82–88 Ma (Kotsu/Bizan, eastern Shikoku). With the exception of a quartz-rich kyanite-bearing eclogite from Gongen, white mica ages overlap with the previously known range of phengite K–Ar ages of pelitic schists of the Sanbagawa metamorphic belt and can be distinguished from those of the Shimanto metamorphic belt. The similarity of K–Ar ages between the eclogites and surrounding pelitic schists supports a geological setting wherein the eclogites experienced intense ductile deformation with pelitic schists during exhumation. In contrast, phengite extracted from the Gongen eclogite, which is less overprinted by a ductile shear deformation during exhumation, yielded significantly older ages. Given that the Gongen eclogite is enclosed by the Higashi-Akaishi meta-peridotite body, these K–Ar ages are attributed to excess 40Ar gained during an interaction between the eclogite and host meta-peridotite with mantle-derived noble gas (very high 40Ar/36Ar ratio) at eclogite-facies depth. Fluid exchange between deep-subducted sediments and mantle material might have enhanced the gain of mantle-derived extreme 40Ar in the meta-sediment. Although dynamic recrystallization of white mica can reset the Ar isotope system, limited-argon-depletion due to lesser degrees of ductile shear deformation of the Gongen eclogite might have prevented complete release of the trapped excess argon from phengites. This observation supports a model of deformation-controlled K–Ar closure temperature.  相似文献   
88.
The Mata Amarilla Formation dates from the early Upper Cretaceous and was deposited during a transition in tectonic regime from the extensional Rocas Verdes Basin to the Austral Foreland Basin. Detailed sedimentological logs and architectural parameters were used to define 13 facies associations. The distribution of facies associations and associated variations in fluvial architecture have enabled large‐scale changes in accommodation space/sediment supply ratios (A/S ratio) to be defined for the three component sections of the Mata Amarilla Formation. The lower and upper sections are characterized by a high A/S ratio, whereas the middle section corresponds to a low A/S ratio. In the western part of the study area, small‐scale variations in the A/S ratio were recognized in the middle section. The strong west to east trend in evolution of the fluvial systems coincides with the direction of propagation of the Patagonian fold and thrust belt, which is located to the west of the study area. Intervals of high A/S ratio (i.e. lower and upper sections) are interpreted to have developed during periods of increased loading by the fold and thrust belt caused by tectonic uplift. In contrast, intervals of low A/S ratio (i.e. middle section) were developed during periods of tectonic quiescence. This article suggests that the large‐scale variations in A/S ratios are related to different rates of migration and growth of the Patagonian fold and thrust belt, whereas the small‐scale variation occurred in response to specific periods of thrusting and folding in the Patagonian fold and thrust belt (i.e. local loads). This field example of the effects of different scales of variation in A/S ratios across the Austral Foreland Basin could be used to recognize similar tectonically forced variations in stratigraphic architecture in other foreland basins throughout the world, as well as to understand the response of fluvial systems to such changes.  相似文献   
89.
甯濛  刘殊  龚文平  魏一冰  纪璇 《地质论评》2015,61(6):1248-1256
前陆冲断带具有巨大的油气勘探潜力,构造分段性控制油气分布。龙门山冲断带构造分段特征明显,但对分段性的形成机理缺乏深入研究。总结前人砂箱模拟实验成果认为:盆地基底差异和推覆带附近刚性体分布的差异,是造成冲断带构造分段的主要原因。龙门山前川西古拗拉谷的发现,为盆地基底存在差异提供了有利证据,古拗拉谷两侧发育大邑古隆起、江油——老关庙古隆起,在后期逆冲推覆过程中形成阻挡。通过对龙门山推覆带基底特征和刚性地体进行分析,结合前人模拟实验结果,明确提出龙门山冲断带构造分段机理:龙门山北段构造的形成是以碧口地块为动力,龙门山初始裂谷边缘古隆起形成阻挡,在古隆起上方形成冲断带;中段以彭灌杂岩体[彭县——灌县(都江堰)杂岩体]传递动力,在川西古拗拉谷坳陷部位,刚性体挤入盆地内部,印支期——喜马拉雅期,古坳陷部位继承性地发展为川西前陆盆地;南段以宝兴杂岩体传递动力,在大邑古隆起上方形成冲断带。  相似文献   
90.
汪晓伟 《地质与勘探》2015,51(1):108-122
博格达造山带东段克孜库都克地区七角井组玄武岩和中酸性火山碎屑岩及少量流纹岩在时空上构成双峰式火山岩组合。玄武岩LA-ICP-MS锆石U-Pb年龄为331.0±3.0Ma,属于早石炭世晚期;Si O2含量为47.68%~48.82%,Ti O2含量(1.83%~2.17%)略高于N型大洋中脊玄武岩,高Al(Al2O3含量为15.56%~16.09%),富钠贫钾(Na2O/K2O=5.44~7.76),低Mg(Mg O含量为5.97%~7.17%,Mg#为43~47),表明其原始岩浆发生过明显的橄榄石和辉石的分离结晶作用。玄武岩具有近于平坦的稀土配分模式,轻微负Eu异常(δEu=0.89~0.93),相对富集Rb、Ba、P,亏损Th、Nb、Ta、Sr、Ti等不相容元素。火山岩岩石地球化学特征表明:研究区玄武岩可能是亏损尖晶石相地幔橄榄岩向石榴石相地幔橄榄岩过渡的产物,且在其上升过程中受到较弱程度的地壳物质混染,形成于陆内裂谷环境,其地球动力学体制可能与古亚洲洋壳向先存的准噶尔-吐哈陆块斜向俯冲,产生的侧向撕裂力拉张陆块有关。克孜库都克地区早石炭世玄武岩构造属性的确立进一步证实了博格达造山带在石炭纪时期处于大陆裂谷演化过程的观点,为进一步深入理解博格达地区石炭纪构造岩浆演化过程提供了新的地质与年代学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号